Application of Artificial Intelligence in Early Detection of Epidural Hematoma

Main Article Content

Abdullah Asy Syifa
Universitas Muhammadiyah Makassar
Qurraru Ainy
Universitas Muhammadiyah Makassar
Ahmad Wirawan
Universitas Muhammadiyah Makassar

Head injury is an emergency condition that is still the leading cause of death. Manifestations of head injury may be accompanied by intracranial hemorrhage, one of which is epidural hemorrhage or epidural hematoma (EDH). This study aims to explore the potential application of artificial intelligence in the early detection of epidural hematoma with the main objective of improving early diagnosis and management of this condition. This paper uses a literature review study method derived from the analysis of various references. The references used have inclusion criteria in the form of full text type, related to the topic of discussion using "Artificial Intelligence", "Deep learning", and "epidural hematome". The result of this study is that EWS finds the presence of EDH in two or more images from a set of CT-Scans, the system will send an email to the medical practitioner with an attachment of images showing EDH for immediate action. In previous tests, the system successfully diagnosed 13 out of 27 patients with EDH, with 85% of the diagnoses having a high level of importance. This shows that the EWS has the potential to improve early detection and management of EDH cases, as well as provide medical practitioners with important information for appropriate action.


Keywords: Artificial Intelligence, Early Detection, Epidural Hematoma, Machine Learning, Neuroimaging, Traumatic Brain Injury
Akkus, Zeynettin, Galimzianova, Alfiia, Hoogi, Assaf, Rubin, Daniel L., & Erickson, Bradley J. (2017). Deep learning for brain MRI segmentation: state of the art and future directions. Journal of Digital Imaging, 30, 449–459.
Ansar, Joan Willy, Anggorotomo, Wirawan, Utami, Deviani, & Virdaus, Nur Alam. (2021). Gambaran Klinis Pasien Epidural Hematoma Di RSUD Dr. H. Abdul Moeloek Provinsi Lampung. Jurnal Ilmu Kedokteran Dan Kesehatan, 8(3).
Astuti, Ewi, Saanin, Syaiful, & Edison, Edison. (2016). Hubungan Glasgow Coma Scale Dengan Glasgow Outcome Scale Berdasarkan Lama Waktu Tunggu Operasi Pada Pasien Perdarahan Epidural. Majalah Kedokteran Andalas, 39(2), 50–57.
Awaloei, Astrid C., Mallo, Nola T. S., & Tomuka, Djemi. (2016). Gambaran cedera kepala yang menyebabkan kematian di Bagian Forensik dan Medikolegal RSUP Prof Dr. E-CliniC, 4(2).
Aydoseli, Aydin, Unal, Tugrul Cem, Kardes, Onur, Doguc, Ozge, Dolas, Ilyas, Adiyaman, Ali Ekrem, Ortahisar, Emircan, Silahtaroglu, Gokhan, Aras, Yavuz, & Sabanci, Pulat Akin. (2022). An early warning system using machine learning for the detection of intracranial hematomas in the emergency trauma setting. Turkish Neurosurgery, 32(3).
Azimah, Fauzan, & Rizky Nova Wardani, Kiky. (2022). Sistem Pendeteksi Gejala Awal Covid-19 dengan Penggunaan Metode Al Project Cycle. Journal Locus Penelitian Dan Pengabdian, 1(6), 405–418. https://doi.org/10.36418/locus.v1i6.135
Brynjolfsson, Erik, Mitchell, Tom, & Rock, Daniel. (2018). What can machines learn and what does it mean for occupations and the economy? AEA Papers and Proceedings, 108, 43–47. American Economic Association 2014 Broadway, Suite 305, Nashville, TN 37203.
Darmayanti, Dewi, & Armaijn, Liasari. (2020). Karakteristik Hasil Ct Scan Kepala Non Kontras Penderita Cedera Kepala Di Rsd Kota Tidore Kepulauan Tahun 2018. Kieraha Medical Journal, 2(2), 104–108.
Drozdzal, Michal, Chartrand, Gabriel, Vorontsov, Eugene, Shakeri, Mahsa, Di Jorio, Lisa, Tang, An, Romero, Adriana, Bengio, Yoshua, Pal, Chris, & Kadoury, Samuel. (2018). Learning normalized inputs for iterative estimation in medical image segmentation. Medical Image Analysis, 44, 1–13.
Gillies, Robert J., Kinahan, Paul E., & Hricak, Hedvig. (2016). Radiomics: images are more than pictures, they are data. Radiology, 278(2), 563–577.
Hassabis, Demis, Kumaran, Dharshan, Summerfield, Christopher, & Botvinick, Matthew. (2017). Neuroscience-inspired artificial intelligence. Neuron, 95(2), 245–258.
Hosny, Ahmed, Parmar, Chintan, Quackenbush, John, Schwartz, Lawrence H., & Aerts, Hugo J. W. L. (2018). Artificial intelligence in radiology. Nature Reviews Cancer, 18(8), 500–510.
Jiang, Feng, Ma, Ling, Broyd, Tim, & Chen, Ke. (2021). Digital twin and its implementations in the civil engineering sector. Automation in Construction, 130, 103838.
Katzman, Benjamin D., van der Pol, Christian B., Soyer, Philippe, & Patlas, Michael N. (2023). Artificial intelligence in emergency radiology: A review of applications and possibilities. Diagnostic and Interventional Imaging, 104(1), 6–10.

Lao, Jiangwei, Chen, Yinsheng, Li, Zhi Cheng, Li, Qihua, Zhang, Ji, Liu, Jing, & Zhai, Guangtao. (2017). A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Scientific Reports, 7(1), 10353.
LeCun, Yann, Bengio, Yoshua, & Hinton, Geoffrey. (2015). Deep learning. Nature, 521(7553), 436–444.
Lee, June Goo, Jun, Sanghoon, Cho, Young Won, Lee, Hyunna, Kim, Guk Bae, Seo, Joon Beom, & Kim, Namkug. (2017). Deep learning in medical imaging: general overview. Korean Journal of Radiology, 18(4), 570–584.
Litjens, Geert, Kooi, Thijs, Bejnordi, Babak Ehteshami, Setio, Arnaud Arindra Adiyoso, Ciompi, Francesco, Ghafoorian, Mohsen, Van Der Laak, Jeroen Awm, Van Ginneken, Bram, & Sánchez, Clara I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88.
Liu, Fang, Jang, Hyungseok, Kijowski, Richard, Bradshaw, Tyler, & McMillan, Alan B. (2018). Deep learning MR imaging–based attenuation correction for PET/MR imaging. Radiology, 286(2), 676–684.
Luo, Wei, Phung, Dinh, Tran, Truyen, Gupta, Sunil, Rana, Santu, Karmakar, Chandan, Shilton, Alistair, Yearwood, John, Dimitrova, Nevenka, & Ho, Tu Bao. (2016). Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. Journal of Medical Internet Research, 18(12), e323.
Malik, Paras, Pathania, Monika, & Rathaur, Vyas Kumar. (2019). Overview of artificial intelligence in medicine. Journal of Family Medicine and Primary Care, 8(7), 2328.
Manarisip, Miranda Esther Irene, Oley, Maximillian Ch, & Limpeleh, Hilman. (2014). Gambaran Ct Scan Kepala Pada Penderita Cedera Kepala Ringan Di Blu Rsup Prof. Dr. Rd Kandou Manado Periode 2012 –2013. E-CliniC, 2(2).
Mello-Thoms, Claudia, & Mello, Carlos A. B. (2023). Clinical applications of artificial intelligence in radiology. The British Journal of Radiology, 96, 20221031.
Montagnon, Emmanuel, Cerny, Milena, Cadrin-Chênevert, Alexandre, Hamilton, Vincent, Derennes, Thomas, Ilinca, André, Vandenbroucke-Menu, Franck, Turcotte, Simon, Kadoury, Samuel, & Tang, An. (2020). Deep learning workflow in radiology: a primer. Insights into Imaging, 11, 1–15.
Mwangi, Benson, Soares, Jair C., & Hasan, Khader M. (2014). Visualization and unsupervised predictive clustering of high-dimensional multimodal neuroimaging data. Journal of Neuroscience Methods, 236, 19–25.
Pedersen, Tore, Johansen, Christian, & Jøsang, Audun. (2018). Behavioural Computer Science: an agenda for combining modelling of human and system behaviours. Human-Centric Computing and Information Sciences, 8(1), 1–20.
Rawis, Maria L., Lalenoh, Diana Ch, & Kumaat, Lucky T. (2016). Profil pasien cedera kepala sedang dan berat yang dirawat di ICU dan HCU. E-CliniC, 4(2).
Rudyanto, Dansen Frans Louise Draven, Patongai, Fikri Muhammad Rifai, & Suharmanto, Suharmato. (2023). Epidural Hematoma pada Laki-Laki 29 Tahun. Jurnal Agromedicine, 10(2), 14–18.

Siahaya, Noviyanter, Huwae, Laura B. S., Angkejaya, Ony W., Bension, Johan B., & Tuamelly, Jacky. (2020). Prevalensi kasus cedera kepala berdasarkan klasifikasi derajat keparahannya pada pasien rawat inap di rsud dr. m. haulussy ambon pada tahun 2018. Molucca Medica, 14–22.
Vieira, Sandra, Pinaya, Walter H. L., & Mechelli, Andrea. (2017). Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications. Neuroscience & Biobehavioral Reviews, 74, 58–75.
Yasaka, Koichiro, & Abe, Osamu. (2018). Deep learning and artificial intelligence in radiology: Current applications and future directions. PLoS Medicine, 15(11), e1002707.
Yasaka, Koichiro, Akai, Hiroyuki, Abe, Osamu, & Kiryu, Shigeru. (2018). Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study. Radiology, 286(3), 887–896.
Yunus, Muhamad, Wahyudi, Alfi, Febriyani, Arti, & Romiza, Rona Asla. (2020). Karakteristik Hasil CT-Scan Kepala pada Penderita Cedera Kepala di Rumah Sakit Dr. H. Abdul Moeloek periode Januari–Desember Tahun 2018. ARTERI: Jurnal Ilmu Kesehatan, 1(3), 177–183.